Ускорение процесса двоичного кодового преооразовзния (бит-блиттинга)
Если подумать о типах разрабатываемых нами компьютерных игр, то станет очевидно, что основной упор нам придется делать на графику.
При работе с такими играми (трехмерные игры, подобные Wolfenstein 3D или DOOM) компьютер большую часть времени тратит на прорисовку стен в трехмерном пространстве или на изображение двухмерных образов спрайтов, представляющих игровые объекты. Мы обсудили изображение в трехмерном пространстве в шестой главе, «Третье измерение». Поэтому теперь я хотел бы остановиться на вопросе оптимизации вывода спрайтов, поскольку это нам особенно понадобится при создании игр данного типа.
В предыдущих главах мы разобрались с понятием бит-блиттинга (глава пятая, «Секреты VGA-карт») и рассмотрели, как передается растровое изображение из одной области памяти в другую. Держу пари, что 90 процентов времени при создании игр уходит на то, чтобы придумать, как ускорить эти процессы. В восемнадцатой главе, «Техника оптимизации», мы обсудим общую теорию оптимизации и разберем несколько примеров использования соответствующей техники после завершения работы над игрой. (Не забывайте о том, что все оптимизационные трюки следует применять на заключительной стадии разработки игры!) Вы должны четко представлять, что для каждой новой игры необходимо заново создавать и реализовывать подходящие алгоритмы битового замещения; более того, вы можете исгюльзовать от двух до пяти различных способов бит-блиттинга в одной и той же игре. При этом каждый из них будет предназначаться для вполне конкретного случая. Например, вы можете обнаружить, что можно оптимизировать функцию бит-блиттинга для объектов, которые на протяжении всей игры остаются неподвижными. Если это так, создайте два преобразования: одно — для движущихся объектов, другое — для стационарных. Код для каждого процесса бит-блиттинга занимает примерно один-два килобайта ияи даже меньше.
Рассмотрим еще один пример возможной оптимизации. Естественно, что чтение данных вашей функцией бит-блиттинга определенным образом зависит от способа их хранения.
И возможно, преобразование будет происходить быстрее, если представить данные в другом виде. Например, вы можете потерять эффективность, сохраняя значения пикселей построчно (в виде двухмерной матрицы), а не по столбцам (по 16 бит). Если иная форма хранения данных дает выигрыш в производительности для некоторых из ваших алгоритмов бит-блиттипга, напишите для них процедуру предварительного преобразования этих данных.
В любом случае, думайте о том, как максимально ускорить процесс бит-блиттинга. Ведь в компьютерной игре на экране присутствуют в среднем от 2 до 20 объектов размером примерно 32х32 пикселя, а это достаточно много для работы в реальном времени.
Примечание
Как вы знаете, я привожу в этой книге некоторые алгоритмы бит-блиттинга. Пожалуйста, не используйте их в ваших компьютерных играх! Они написаны исключительно в демонстрационных целях. Вы должны для каждого конкретного случая найти свой вариант.
Рассмотрим еще один важный аспект бит-блиттинга объектов, который вы сможете с выгодой использовать. Если вы твердо знаете, что размер ваших объектов будет фиксированным (например, 16х16 или 32х32), то можете написать отдельный алгоритм бит-блиттинга, специально оптимизированный для каждого из этих размеров. Помните: не существует общих правил быстрого написания компьютерных игр. Нет уже готовых алгоритмов и написанных кем-то библиотек. Вы должны будете использовать по максимуму весь свой творческий потенциал. Только, не пугайтесь. Даже самая замысловатая игра использует алгебру и геометрию не более чем на уровне высшей школы. Это, конечно, не значит, что вы не можете использовать сверхсложные алгоритмы и забираться в дебри, высшей математики. Однако в результате может оказаться, что двенадцатилетний подросток найдет путь в 100 раз более быстрый и эффективный только потому, что он не такой умный как вы!